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SHORT COMMUNICATION

Solution to Euler equations by high-resolution upwind compact
scheme based on flux splitting

Hu Jun, Shaogang Guo∗,† and Zhenqiang Yao

School of Mechanical and Power Energy Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

SUMMARY

A high-resolution upwind compact method based on flux splitting is developed for solving the compressive
Euler equations. The convective flux terms are discretized by using the modified advection upstream
splitting method (AUSM). The developed scheme is used to compute the one-dimensional Burgers equation
and four different example problems of supersonic compressible flows, respectively. The results show that
the high-resolution upwind compact scheme based on modified AUSM+ flux splitting can capture shock
wave and other discontinuities, obtain higher resolution and restrain numerical oscillation. Copyright q
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, the compact scheme has been widely used in the large area of computational
problems, for example, to compute hyperbolic equations. Generation of compact schemes is con-
sidered in [1, 2]. There were also some works on improving the compact scheme directly or on
solving two-dimensional incompressible and compressible flow problems with the conventional
compact schemes by combining the flux splitting [3, 4]. In this paper, not only the flux-splitting
schemes are improved but also a symmetric filtering term is added to the compact schemes to
obtain high-resolution upwind compact scheme.

The primary objective of numerical schemes for solving applied gas dynamics problems is to
maximize both robustness and accuracy. This requirement is particularly important in Euler solu-
tions in high-speed regimes and complicated boundary layer near wall where intense shock waves

∗Correspondence to: Shaogang Guo, School of Mechanical and Power Energy Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China.

†E-mail: guoshaogang1217@yahoo.com.cn

Copyright q 2007 John Wiley & Sons, Ltd.



2140 H. JUN, S. GUO AND Z. YAO

and boundary layers may exist simultaneously. High-order compact schemes have had rapid de-
velopment in recent years due to their narrow grid stencil, enhanced accuracy and better resolution
characteristics over the non-compact conventional schemes. Especially Lele [1] has put forward
high-order compact schemes based on the Hermite method, which can deal with complicated bound-
ary layer but produce mendacious oscillation in discontinuities. The paper presents a high-resolu-
tion upwind compact scheme based on flux splitting which can deal with discontinuities better.

Flux splitting mainly includes flux vector splitting (FVS) and flux difference splitting (FDS).
Current trend in the development of upwind schemes focused on the construction of hybrid flux-
splitting formulations which seeks to combine FVS with FDS. FVS was put forward by Steger
and Warming [5] and Van Leer [6], respectively. This scheme is simple and robust in the capture
of intense shocks and rarefaction waves. The high-order compact methods developed by Cockburn
and Shu [7], Mawlood et al. [8] and Ravichandran [9] among others are successful examples
of FVS-based schemes. The drawback of FVS methods is that there exist accuracy problems in
resolving shear layer regions due to the excessive numerical dissipation error associated with them.

In contrast, FDS such as Roe’s scheme that utilizes the solution of the local Riemann problem
usually provides accurate solutions. The numerical methods developed by Deng and Maekawa [10]
for solving the Euler equations and Deng and Zhang [11] for solving the Euler and Navier–Stokes
equations are examples of high-order compact methods that utilize Roe’s FDS. Unfortunately,
Roe’s scheme has a number of robustness problems such as the violation of entropy condition and
the carbuncle phenomenon.

Liou and Steffen [12] put forward the advection upstream splitting method (AUSM), which
belongs to upwinded scheme. The most important idea lies in including convection and sound
wave influence in the process of flow transmit. It disparts the inviscid flux in the Euler equations:
the convective and pressure terms. This scheme develops rapidly and became more mature AUSM+
scheme soon. It has the ability to distinguish physical discontinuities as shock wave, slipstream,
etc. and can remain positive. It can deal with the transmit of discontinuities such as shock wave.
Especially, the modified AUSM+ splitting approach by Dewang and Wang [13] in 2004 not only
decreases the numerical oscillation and improves resolution but also increases the precision and
constringency.

In this paper, a high-resolution upwind compact scheme that is based on the modified AUSM+
flux splitting is developed and tested. The effect of gradient of the pressure is introduced to
improve the AUSM+ flux splitting scheme, and a symmetric filtering term is added to the compact
scheme to obtain a high-resolution upwind scheme. The numerical method is tested in the Burgers
equation and in four different example problems about supersonic compressible flows, Sod’s
problem, interaction of a moving shock with a density wave, double Mach reflection problem and
oblique shock reflection problem, respectively. This shows that the present compact scheme based
on modified AUSM+ flux splitting can capture shock wave and other discontinuities, obtain high
resolution and proper solution and restrain numerical oscillation much better.

2. GOVERNING EQUATIONS

The two-dimensional compressible Governing equations can be written in the conservation form as

�Q
�t

+ �E
�x

+ �F
�y

= 0 (1)
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where

Q =

⎡⎢⎢⎢⎢⎢⎣
�
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�v

�e
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�u

�u2 + p

�uv

�uH
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⎡⎢⎢⎢⎢⎢⎣
�v

�uv

�v2 + p

�vH

⎤⎥⎥⎥⎥⎥⎦
�, r, u, v, p, e and H are the density, the x-component of the velocity, the y-component of the
velocity, the pressure, the total energy and the total enthalpy, respectively. The total enthalpy H is
related to the other quantities by the following relation:

H = e + p

�

For a perfect gas, the total energy is given by

e= p

(� − 1)�
+ 1

2
(u2 + v2)

where � is the ratio of specific heats and takes the value of 1.4 for air. The normalization has been
carried out by using the following free-stream reference: density �∞, sonic speed a∞, pressure
�∞c2∞; the sonic speed is defined as a = √

rp/�.
In fact, a system of coordinates is often transformed based on different flow problems in order

to make calculation easier. Equation (1) can be transformed from Cartesian coordinates (x, y) into
computed coordinates (�, �) as

�Q̃
�t

+ �Ẽ
��

+ �F̃
��

= 0 (2)

where

Q̃ = Q

J
, Ẽ = (�x E + �y F)

J
, F̃ = (�x E + �y F)

J

here

�x = J y�, �y = −J x�, �x = −J y�, �y = J x�

and the Jacobian of the transformation is given by

J = 1

(x�y� − x�y�)

3. SPATIAL DISCRETIZATION

Dewang and Wang [13] have pointed out that conventional AUSM+ scheme leads to numerical
oscillation without dealing with the sonic speed, although it does not have ‘carbuncle’ phenom-
ena. Therefore, in the hybrid modified AUSM+ flux splitting, the sonic speed is expressed as
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a1/2 = 1
2 (aL + aR). Because the ε-direction discretization is similar to the �-direction discretiza-

tion, the present paper introduces only the former discretization. The mid-point numerical flux,
using the modified AUSM+ splitting approach, can be expressed as

Ẽi+1/2, j =
M1/2

√
�2x+�2y

J
(�L+�R) −

|M1/2|′
√

�2x+�2y

J
(�R−�L) + 1

J
(p+

� �L+p+
� �R) (3)

Here, the flux function is split into convective section and sound wave section; the first two terms
represent convective term, and the last one is the pressure term:

�=

⎡⎢⎢⎢⎢⎢⎣
�a

�ua

�va

�Ha

⎤⎥⎥⎥⎥⎥⎦ , � =

⎡⎢⎢⎢⎢⎢⎣
0

�x p

�y p

0

⎤⎥⎥⎥⎥⎥⎦
M1/2 is the numerical value of the Mach number:

M1/2 = (1 + ẼL)M+
�L + (1 + ẼR)M−

�R

This method to deal with M1/2 can restrain numerical oscillation on the boundary layer near the
wall. Here

M±
� =

⎧⎨⎩
1
2 (M� ± |M�|) |M�|�1

± 1
4 (M� ± 1)2 ± 1

8 (M
2
� − 1)2 |M�|<1

and

P±
� =

⎧⎨⎩
1
2 (1± sgn(M�)) |M�|�1

± 1
4 (M� ± 1)2(2 ∓ M�) ± 3

16M�(M
2
� − 1)2 |M�|<1

|M1/2|′ =

⎧⎪⎨⎪⎩
|M1/2| |M1/2|��0

|M1/2| + �20
2�0

|M1/2|<�0, �0 = 0.1 · |M∞|

where, taking into account the effect of gradient of pressure, ẼL is expressed as

ẼL =

⎧⎪⎪⎨⎪⎪⎩
p�,L − p�,R

p�,L + p�,R
�(p�,L , p�,R) · | f ±

M,L | · min

[
1,

( |V�,L |
	1/2

)0.25
]

|M�,L |<1

0 |M�,L |�1

(4)

Obviously, it is similar to a limiter.
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Here,

f ±
M,L =

⎧⎨⎩
1
2 (M�,L ± |M�,L |) |M�,L |>1

± 1
4 (M�,L ± 1)1/2 |M�,L |�1
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b
,
b

a

)
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b
,
b

a

)
�3

4
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(
a

b
,
b

a

)
<
3

4

In [14], every term in (4) was described in detail. �(p�,L , p�,R) makes the function ẼL go to
zero in large pressure gradient; f ±

M,L is designed to reduce the order of magnitude of the function

ẼL , and min[1, (|V�,L |/	1/2)0.25] makes the function ẼL vanish in the stagnation region. As for
min[1, (|V�,L |/	1/2)0.25], it has been stated very detailedly in [14]; hence we are not repeating.
ẼR is symmetrical with ẼL , and it is not restated here.
The left (·)L and right (·)R states are obtained by a fourth-order MUSCL polynomial [15].

The high-order approximations to the first-order derivatives are then obtained by the sixth-order
central compact scheme of Lele [1], but the discretization of the flux term is a little different; the
discretized point is selected in the middle of two grid points; hence, the corresponding coefficient
of the discretized point must be changed. The scheme is presented as follows:

0.0895(Ẽ ′
i−2, j + Ẽ ′

i+2, j ) + 0.57967(Ẽ ′
i−1, j + Ẽ ′

i+1, j ) + Ẽ ′
i, j

= 1

��
[1.2988(Ẽi+1/2, j − Ẽi−1/2, j ) + 0.33539(Ẽi+3/2, j − Ẽi−3/2, j )

+ 0.006078(Ẽi+5/2, j − Ẽi−5/2, j )] (5)

In fact, the high-resolution upwind schemes can be formed by adding a symmetric filtering term
to the asymmetric explicit part of a central compact schemes: the idea has been interpreted by De
and Esmaran [16].

Here, Ẽ ′
i, j is the higher-order approximation to the first-order derivatives. Equation (5) is used

for evaluating the derivatives at the interior points. At the boundaries, the following one-sided
compact schemes are used:

Ẽ ′
1, j − Ẽ ′

2, j = 1

��
(−Ẽ3/2, j + 2Ẽ5/2, j − Ẽ7/2, j ) (6)

Ẽ ′
i max, j − Ẽ ′

i max−1, j = 1

��
(Ẽi max−1/2, j − 2Ẽi max−3/2, j + Ẽi max−5/2, j ) (7)

Evaluation of the �-direction derivatives is carried out in the same manner and is not shown here.
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4. NUMERICAL RESULTS

In this section calculations are carried out for the Burgers equation and four different examples of
compressible flow. Example 1 is the solution of the one-dimensional Burgers equation. Example 2
is Sod’s problem. Example 3 is the interaction of a moving shock with a density wave. Example 4
is double Mach reflection problem. Example 5 is the oblique shock reflection problem.

4.1. Example 1: one-dimensional Burgers equation

The steady-state solution of the one-dimensional Burgers equation is solved with a source term

ut +
(
u2

2

)
x

= sin 2x

2

with the initial condition u(x, 0) = 2 sin x and the boundary condition u(0, t) = u(
, t) = 0. This
problem was studied in [17] as an example of multiple steady-state solutions for characteristic
initial value problems. A smooth steady-state solution u(x,∞) = sin x is given here. Errors for
the one-dimensional Burgers equation are calculated using the present scheme and the AUSM+
scheme, respectively. The numerical results are given in Table I. It is clear that the present scheme
can give much less error than the AUSM+ scheme.

4.2. Example 2: Sod’s problem and Lax’s problem

For Sod’s problem, the initial condition is

(�, u, p)T =
{

(0.125, 0, 0.1) x�0.5

(1, 0, 1)T x<0.5

and it uses the computational mesh which is composed of 100 grid point.
Figures 1 and 2 show two computational results of the distributions for the density at t = 0.18

by the AUSM+ scheme and the present scheme, respectively, in comparison with the exact
solution. Obviously, it can be seen that the upwind compact scheme based on flux splitting has
good convergence, and the present scheme has higher accuracy and resolution than the AUSM+
scheme. For the AUSM+ scheme, 3–4 grid points are needed to resolve the shock wave, rarefaction
wave and density discontinuity distinctly by AUSM+ scheme, whereas the present scheme needs
only 1–2 grid point to distinguish these physical discontinuities clearly.

Table I. Errors of the present scheme and the AUSM+ scheme for
the one-dimensional Burgers equation with N cells.

The present scheme AUSM+
N L1 error L∞ error L1 error L∞ error

20 5.7647e−04 9.6327e−04 1.3297e−03 7.6970e−03
40 4.1263e−05 7.3726e−05 7.6321e−04 3.4312e−04
80 6.0728e−06 8.9436e−06 8.7143e−05 1.1731e−05

160 8.7326e−08 1.0727e−07 4.3450e−07 2.0041e−06
320 9.3723e−09 2.0314e−08 7.1344e−08 1.4378e−07
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Figure 1. Density distribution (AUSM+).
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Figure 2. Density distribution (the present scheme).
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4.3. Example 3: interaction of a moving shock with a density wave

The high-resolution upwind compact scheme based on the modified AUSM+ flux splitting scheme
is applied to Shu and Osher’s one-dimensional shock/turbulence interaction model problem [18] in
comparison with AUSM+ scheme. Shock/turbulence interaction problem describes the interaction
between a moving Mach 3 shock wave and a fluctuating density sine wave [19]. The initial flow
conditions are given by

(�, u, p)T =
{

(1 + 0.2 sin(5x), 0, 1) x�1.0

(3.857143, 2.629369, 10.33333)T x<1.0

The computational domain, 0�x�10, is covered with 400 and 200 nodes, respectively. We use
the method in [20] to obtain the ‘exact’ solution, but the number of grid points adds to 4000. It
means that the numerical solution of the AUSM+ scheme with 4000 grid points is regarded as
the reference data and it is assumed as the exact solution.

The numerical solutions using the present scheme and the AUSM+ scheme are shown in Figures
3 and 4. AUSM+ scheme uses 400 grid points to display the density distribution, whereas the
present scheme uses 200 and 400 grid points, respectively. It is clear that the present schemes
perform better than AUSM+ schemes, and the former can almost obtain the similar accuracy to
the latter with only a half of grid points. This means the upwind compact scheme based on flux
splitting plays an important role in decreasing the quantity of calculation. Specifically, AUSM+
schemes produce poorer results in resolving the post-shock entropy waves. The present schemes
can capture these waves more correctly with the same grid points.
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Figure 3. Density distributions of the one-dimensional shock/turbulence interaction.
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Figure 4. Close-up view of Figure 3.

4.4. Example 4: double Mach reflection problem

This problem was initially proposed and studied in detail by Woodward and Colella [21]. It has
been used extensively as a test case in the literature for high-resolution schemes. In this case, a
strong shock wave impinges on a ramp with a 30◦ angle. The inlet flow is a strong shock wave
whose Mach number is 10. In order to simplify the problem, the inlet shock wave is inclined
with a 60◦ angle with the axis, and the computational domain is beginning with x = 1/6. The
computational domain for this problem is chosen to be (0, 4) × (0, 1). For the top boundary of the
computational domain, the solution is set to describe the exact motion of the Mach 10 shock. The
left boundary is set as the exact post-shock condition, whereas the right boundary is set as outflow
boundary. The initial condition is set:

u(x, y, 0) =
{
uL , y�h(x, 0)

uR, y<h(x, 0)

Here, left and right state values and shock wave’s heights are

uL = (8, 57.1597,−33.0012, 563.544), uL = (8, 57.1597,−33.0012, 563.544)

h(x, t) = √
3

(
x − 1

6

)
− 20t

and computational grid number is 960× 240; the results at t = 0.2 are shown. In all the plots, we
use 30 contours equally distributed from � = 1.5 to 22.7.

Figure 5 is the numerical solution of the present scheme, and Figure 6 is calculated using the
AUSM+ scheme. Figure 7 is the close-up view of Figures 5 and 6 for the ‘blown-up’ domain.
Note that this detailed structure is of physical interest and was studied before with an adaptive grid
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1 2 3 4

1

Figure 5. Double Mach reflection problem (the present scheme), t = 0.2, density contours (960× 240).
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1

Figure 6. Double Mach reflection problem (AUSM+), t = 0.2, density contours (960× 240).
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Figure 7. Close-up view of Figures 5 and 6 (around x = 2–3).

calculation in [22]. It is not easy to observe any significant difference between the present scheme
and the AUSM+ scheme in Figures 5 and 6. However, if we show a ‘blown-up’ portion around
the double Mach region, as shown in Figure 7, it can be seen that the present scheme gives a
much better resolution for these structures than the AUSM+ scheme with the same number of
elements.

4.5. Example 5: oblique shock reflection problem

The first two-dimensional considered test case is the reflection of a shock wave on an inviscid wall.
The shock angle is 33◦ from the Mach 3 free stream. The mesh size is 60× 20 and is uniformly
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Figure 8. Oblique shock reflection problem, t = 2.0, pressure contours.
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Figure 9. The contribution of pressure in y = 0.25.

distributed in both directions. The jump conditions are imposed on the upper boundary, whereas
slip wall conditions are set at the bottom boundary. Pressure field is plotted in Figure 8. Figure 9
shows the distributions for the pressure in y = 0.25. Although the shock wave is not aligned with
the computational mesh, no significant wiggles are presented around the discontinuity which is
well captured. The results are in good agreement with the numerical solution presented in [23],
but upwind compact scheme based on AUSM+ flux splitting needs fewer cells. Especially the
present scheme needs only 1–2 grid points to realize the transition in the discontinuities and this
means that the present scheme can obtain acceptable results by using fewer cells.

5. CONCLUSIONS

A high-resolution upwind compact method is developed for solving the Euler equations. The
method is based on the modified AUSM+ flux splitting and a high-resolution upwind compact
scheme. The numerical results show that the present scheme not only needs less grid numbers as
a compact scheme but also has higher resolution in distinguishing physical discontinuities such
as shock wave and restrain numerical oscillation. The present scheme is a high-resolution upwind
scheme. Especially we modify the AUSM+ scheme considering the subsonic conditions; hence,
the scheme can be applied to the solution for different subsonic and supersonic flow.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2139–2150
DOI: 10.1002/fld



2150 H. JUN, S. GUO AND Z. YAO

REFERENCES

1. Lele SK. Compact finite difference schemes with spectral-like resolution [J]. Journal of Computational Physics
1992; 103(1):16–42.

2. Carey GF, Spotz WF. Higher-order compact mixed methods. Communications in Numerical Methods in
Engineering 1997; 13:553–564.

3. Mawlood MK, Basri S. Solution of Navier–Stokes equations by fourth-order compact schemes and AUSM flux
splitting. International Journal of Numerical Methods for Heat and Fluid Flow 2006; 16:107–120.

4. Mahesh K. A family of high order finite difference schemes with good spectral resolution. Journal of Computational
Physics 1998; 145:332–358.

5. Steger JL, Warning RF. Flux vector splitting of the inviscid gas dynamics equations with application to finite
difference methods. Journal of Computational Physics 1981; 40:263–293.

6. Van Leer B. Towards the ultimate conservation difference scheme V.A. second order sequel to Godunov’s method.
Journal of Computational Physics 1979; 32:101–136.

7. Cockburn B, Shu CW. Nonlinearly stable compact schemes for shock calculation. SIAM Journal on Numerical
Analysis 1994; 31:607–627.

8. Mawlood MK, Asrar W, Omar AA, Basri S. A high resolution compact upwind algorithm for inviscid flows.
AIAA-2003-0076.

9. Ravichandran KS. High order KFVS algorithm using compact upwind difference operators. Journal of
Computational Physics 1997; 43:357–372.

10. Deng X, Maekawa H. Compact high-order accurate nonlinear schemes. Journal of Computational Physics 1997;
130:77–91.

11. Deng X, Zhang H. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics
2000; 165:22–44.

12. Liou MS, Steffen CJ. A new flux splitting scheme. Journal of Computational Physics 1993; 107:23–29.
13. Dewang L, Wang K. The modified AUSM+ scheme. Acta Aerodynamica Sinica 2004; 22(4):404–409.
14. Kim KH, Lee JH, Rho OH. An improvement of AUSM schemes by introducing the pressure-based weight

functions [j]. Computer and Fluids 1998; 3(27):311–346.
15. Yamamoto S, Daiguji H. Higher-order-accurate upwind schemes for solving the compressible Euler and Navier–

Stokes equations. Computers and Fluids 1993; 22:259–270.
16. De AK, Eswaran V. Analysis of a new high resolution upwind compact scheme. Journal of Computational

Physics 2006; 218:398–416.
17. Salas MD, Abarbanel S, Gottlieb D. Multiple steady states for characteristic initial value problems. Applied

Numerical Mathematics 1986; 2:193–210.
18. Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes II. Journal

of Computational Physics 1989; 83:32–78.
19. Billet G, Louedin O. Adaptive limiters for improving the accuracy of the MUSCL approach for unsteady flows.

Journal of Computational Physics 2001; 170:161–183.
20. Kim D, Kwon JH. A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for

compressible flowfield analysis. Journal of Computational Physics 2005; 210:554–583.
21. Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of

Computational Physics 1984; 54:115–173. ISSN: 0021-9991.
22. Berger M, Colella A. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational

Physics 1989; 82:64.
23. Visbal MR, Gaitonde DV. Shock capturing using compact-differentiated-bases method. Forty-third AIAA Aerospace

Sciences Meeting and Exhibit, Reno, Nevada, 2005; AIAA Paper 2005-1265.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:2139–2150
DOI: 10.1002/fld


